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The wave drag of a Hovercraft 

By M. J. BARRATT 
Hovercraft Development Ltd., Hythe, Southampton 

(Received 17 August 1964) 

The wave drag of a Hovercraft is calculated as the horizontal force associated 
with a pressure distribution moving over the free water surface. Ageneral formula 
is derived for the wave drag due to any pressure distribution moving over water 
of finite depth. This is then applied to rectangular and elliptical planform 
Hovercraft, and results are presented for a range of Froude numbers and water 
depths. 

1. Introduction 
A Hovercraft travelling over water sets up a train of induced waves moving 

at the speed of the craft. Energy is supplied to these waves by the pressure 
of the cushion on the surface, the horizontal component of the reaction appearing 
as ‘wave drag’ on the craft. Since a Hovercraft is largely separated from the 
water surface, it  is possible to calculate the wave drag as the force associated with 
a pressure distribution which is assumed independent of the velocity of the craft. 

Expressions for the wave resistance of a pressure distribution moving over a 
free liquid surface have been given by Havelock (1932). These are applicable 
to any distribution of pressure, for liquid of infinite depth. This work is here 
extended to cases when the water depth is finite, and is applied to specific 
pressure distributions, corresponding to the cushion pressure distributions of 
Hovercraft. 

2. Analysis 
Consider an infinite sea of uniform depth h. Let rectangular Cartesian axes 

Ox, Oy and Ox be fixed relative to a pressure distribution moving over the free 
surface, with the origin in the undisturbed surface, the x-axis in the direction of 
travel, and the z-axis vertically upwards. Let the pressure distribution p(x ,  y) 
move with constant velocity c, and let q(x, y) be the vertical surface disturbance. 

Irrotational flow is assumed. The problem is made determinate by assuming a 
frictional force on each particle of liquid which is proportional to the velocity of 
that particle relative to the undisturbed liquid (Rayleigh 1883). The coefficient of 
this force (p), which is defined as the frictional force per unit mass divided by the 
relative velocity of the particle, is made to approach zero. It can be shown that 
this device is not inconsistent with irrotational flow in the liquid. 

Following Havelock, take a possible form for the velocity potential, and 
find the surface pressure to which it corresponds. Consider the function 

~ = 
P(k)  cosh [k(z  + h)]  eikwkdk sec 8d8 

k - k, see2 8 tanh kh + ip sec 8 ’ ,, (3.1) 
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where w = x cos 8 + y sin 8 and k, = g/c2. 

condition 

Also the corresponding surface pressure distribution will be shown to have a 
simple form (2 .6) ,  which allows the deduction of the velocity potential correspond- 
ing to an arbitrary pressure distribution. 

The assumption is made that the slope of the surface and T/h are small. The 
surface velocity condition is then 

It can be verified that this satisfies Laplace's equation and the fixed boundary 

( 2 . 2 )  (a$/ax),=-, = 0. 

c(ar la4  = (aqwz),=,. (2.3) 

Hence 
F(k)  sinh kheikWkdk sec28d8 _____ , k - k, see2 8 tanh kh + ip sec 8 .  

The surface pressure is given by 

Therefore p = - i cp l '  low F(k)  cosh kh eikwkdkd8, 
-n 

= - 2nicp kF(k)  cosh kh J, (kr )  dk,  
J O W  

where r2 = x2 + y 2  and J, is a Bessel function of the first kind. But 

(Havelock 1932, equation (24); Watson 1923). 

Therefore from (2.1), (2 .6)  and (2.7), the velocity potential for a radially sym- 
metric pressure distribution p ( r )  is given by 

"f(k) (cosh L(z  + h)/cosh kh} eikWk dk sec 8d8 ' = &/:.SO k - k, sec2 8 tanh kh + ip see 8 > (2.8) 

where f ( k )  = wp(a)  J,(ka) a d a .  
0 

If the pressure distribution is concentrated at the origin to produce a finite 

f (k) = P/2n. (2.9) 
force P, 

So, generalizing for any continuous pressure distribution, 

(cosh k(z  + h)/cosh kh}eikEkdk see BdOp(x', y ' )  d S  
k - k,  see2 0 tanh kh + ip see 8 7 (2.10) 

d S  indicates the integral taken 

# = &sJsJ:TJo 
where i i i  = (x - x') cos 8 + ( y  - y')  sin 8 and 
over the surface S. 
The wave resistance is given by 

(2.11) 
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taken over the surface z = 0 (Lamb 1926). After some manipulation, taking the 
real part, the velocity potential becomes 

1 $Lo = 471.2cp yJom (CC P, + sc P, + cs F, + ss F,) k dk do, (2.12) 

where 

CC = cos(kxcos8)cos(kysin8), 

CS = cos (kx cos 8) sin (ky sin 8), 
SC = sin(kzcos8)cos(kysin8), 

S S  = sin (kx cos 8) sin (ky sin 8),  

Fl = {(k - k, see2 8 tanh kh) Q, + p see 8 P,) D,, 
F, = { - (k-kosec28tanhkh)P,+~~sec8Q,)D,, 

F3 = {(k-k,sec28tanhEh) Qo+psec8Po)D,, 

F, = {(k- kosec28tanhkh)Po-psec6&ofD,, 

DF = see 8/{(k - Ic, see2 8 tanh kh), +p2 see2 01, 
and 

P, = p(x’, 9’) cos (kx’ cos 8) cos (ky’ sin 8) d s ,  

Po = p(x‘, y’) sin (kx’ cos 8)  sin (ky’ sin 8) dS, 

Q, = j p(x’, y’) sin (kx’ cos 8)  cos (ky‘ sin 8) as, 

Q~ = IS p(x’, y’) cos (kx’ cos 8) sin (ICY’ sin 8) dS, 

Similarly, 

ss 

IS 

S 

(2.14) 

(2.15) 
the integrals being taken 

over the surface S. 

(g)s=o = AJ1.j; (CC C, + SC G, + CS G, + SSG,) kdkd8 ,  (2.16) 

where the G’s are the same as the F’s except that 

D, = k tanh kh see 8/{(k - k, see2 0 tanh Mi), + p2sec2 0). 

From the Fourier integral theorem it can be shown that 

1: ./ (F, G, + F, G, + P3 G, + F, G,) k dk do, 
/~mS_mnF(x ,Y)G(x ,? l )dza~ = 47r2 0 

(2.17) 

where 

and 

P(x,  y) = J” j (CCP,  + sc F, + C S F ,  + ss F4) kdkd8  
0 

G ( x ,  y) = In 1; (CC G, + SC G, + CS G, + S S  G4) kdkd8 (Havelock 1932). 
-71 

Thus 

* (p,“ + pi + Q,“ + Q;) (tanh kh) k2dksec2 8d8 
= I i m ~ j ~  j . (2.18) 

p+o 4 7 ~ 2 8 ~  --n (k - k, see2 8 tanh kh), +p2 see2 0 
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The above limit is non-zero only when 

k-k0sec28tanhkh = 0 

has a real positive root (denoted k,). For this to exist, 

k, hsec26' > 1. 
Thus 

(P," + P$ + Qf + Q$) (tanh kh) k2 dk x/~y (1: (k , -Tec2  8tanh k,h) + (k - k,) (1 - k,h see2 6' sech2 k,h) + . . . +ips& 

(P," +Pi + Qf + Q;) (tanh kh) k2 dk 
-/om (k, - 12, see2 8 tanh k, h) + (k - k,) (1 - k, h see28 sech2 k,h) + . . . - i p  sec 8 

x sec8d8, (2.19) 
where 8, = 0 when k,h > 1 or c2 < gh. 

= cos-l(k,h)B when k,h < 1 or c2 > gh. 

To evaluate the integrals with respect to k, consider the contour integrals en- 
closing the 1st and 4th quadrants and the positive half of the complex k-plane. 
Then 

(2.20) 

For h + 00, k, + k, see2 8, and this reduces to the result obtained by Havelock, 
namely 

(2.21) 

1 gn k: tanh k,h see 6' (P," + P$ + Q,"+ Q;) d8 R=-/ - 
TC2P 0, 1 - ko h see2 8 sech2 k, h 

(P," + P; + Q," + Q;) see5 8 d8. 

3. Applications 
The pressure distribution due to a Hovercraft can normally be represented by 

a uniform pressure over the area of the cushion. Two cases are considered in 
detail; craft with rectangular and with elliptical cushion planforms. 

(1) Rectangular craft 
In  this case from (2 .15)  

cos(k,xcosB)dx cos(k1ysin8)dy, Po = Q, = Q, = 0. (3.1) 

Using the result k, = k, see2 6' tanh k, h, 

itz sin2 (k, a cos 8) sin2 (k, b sin 19) d8 
0. k, sin2 6' cos 8 (1  - k, h seeZ 8 sech2 k, h) * 

Putting k,/k,  = K ,  b/a = A ,  h/2a = H ,  c(2ga)-& = FR, 

in 
(3 .3 )  

sin2 ( K / 2 F &  cos 8) sin2 ( K A / 2 F &  sin 13) d8 
K sin2 8 cos 0 (1  - (HIP&)  see2 6' sech2 KHIFL) ' 
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where K - see2 0 tanh KH/P& = 0, S = 4ab, 

8, = 0 when H / F S  > 1, 

W = p ,  S 

and Bo = cos-l (H$/FR) when H/P$ < 1. 

For deep water ( H  large) this becomes 

_- R pg&3 - 1 6 ~ ~ ~ ~ 1 s i n 2 ( [ 1 ~ 2 P ~ ~ s e o 2 8 o o s 0 ) s i n 2 ( [ ~ ~ 2 F ~ ] s e c ~ B s i n 8 ) d B  . (3.4) 
W P c  d A  0 sin2 6 see 6 

(2) Elliptical craft 

p, cos (Icx’ cos 6 )  cos (Icy’ sin 0) dS 

Putting x’ = r cos 4, y’ = (b/a) r sin 4, 

= 2npc- ~ J I J o ( k r { c o s 2 6 +  (b/a)2sin28}*)rdr 

J, (ka{cos20+ (b/a)2sin20}k), (3.5) 
- - 2TPCb 

k(cos2 6 + sin2 6}$ 

P - Q, = Q, = 0. 0 -  

Thus 
4np:b2 8. tanhk,hsec8J: (ka{cos2B+ (b/a)2sin2#}4) 

do, (3.6) ’ = ~ ~ 8 0  (cos2 8 + sin2 O} (1 - koh see2 8 sech2 k,h) 
and 

do, 
R p g  JS 2J(n)A* 6. KJ: ((K/2F&) cos 8 (1 + A2 tan2 6)*} 
w Pc 
--- - 

F$ loo cos 8( 1 + A2 tan2 6) (1 - (H/F$) see2 6 sech2 KH/P&)} 
(3.7) 

where X = nab. 

For deep water, this becomes 

R p g  $3 2 &r) A* 
w P c  F& (3.8) 

Similarly, it is possible to  derive formulae corresponding to non-uniform 
pressure distributions. Results for these, and for the above two cases, are 
presented in the following section. 

- 

4 Results 
Figures 1-9 show the non-dimensional wave drag coefficient plotted against 

Froude number, for a variety of craft configurations, in deep and in shallow 
water. The following general features can be seen: 

(1) The drag coefficient rises to a maximum at ‘hump speed ’, corresponding 
to a Froude number of 0.5-1.0 in deep water. Other peaks, sometimes of greater 
height, occur at lower speeds. 
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FIGURE 1. Wave drag of a rectangular planform FIGURE 2. Wave drag of a rectangu- 
lar Hovercraft in shallow water. Beam/ 
length = 0.667. 

Hovercraft in deep water. 
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FIGURE 4. Wave drag of a rectangular 
planform Hovercraft in shallow water. 
Beam/length = 0.333. 
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FIGURE 7 .  Wave drag of an elliptical 
planform Hovercraft in deep water. 

Beam/length = 0.15. 
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FIGURE 8. Wave drag of an elliptical 
planform Hovercraft in shallow water. 
Beam/length = 0.5. 
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(2) In shallow water, the hump speed moves to lower Froude numbers, given 
approximately by (h/Z)*, where 1 is the craft length. The peak value of the drag 
rises indefinitely as the depth decreases. 

Figures 1-6 give the wave drag in deep and shallow water for a rectangular 
craft, while figures 7 and 8 give similar information for an elliptical craft. Com- 
paring the deep-water results, it can be seen that for a given value of beam/ 
length ratio the elliptical craft has higher values of hump drag, but the rec- 
tangular craft has higher values at the lower speed peaks. The curves’have not 
been plotted for lower Froude numbers, because of the large number of points 
needed to define them, and the doubtful validity of the theory in these regions. 
In  shallow water the rectangular planform craft shows greater fluctuations in 
wave drag than does the elliptical craft (figures 3 and 8). 

1 l . 1  -0 
Step pressure 
distribution 

0 I 0.5 1.0 1.5 

lik 
FIGURE 9. Wave drag of a rectangular planform Hovercraft in deep water. 

Step pressure distribution. Beam/length = 0.267. 

A check on these results is provided by the work of Newman & Poole (1962). 
This provides similar results for canals of finite width, and appears to give 
identical results as the width becomes very large. 

Figure 9 shows the drag of a Hovercraft with a step fore and aft pressure 
distribution. This might correspond to a craft with ‘double curtains ’, in which 
two jets are used, one inside the other. In  spite of the large number of points 
calculated, no double peaks or other unusual features are visible. The result 
is closely similar to that for a rectangular craft with uniform pressure distribution. 

In the previous analysis it has been assumed that the wave slope is every- 
where small and that the wave amplitude is small compared with the water 
depth. For small water depths or Froude numbers, these conditions are not met, 
leading to the unrealistically high drag peaks shown in the figures. By consider- 
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ing the maximum steepness attained by waves before breaking, Hogben (1964) 
has deduced limiting values for wave drag. These are only strictly applicable to 
two-dimensional waves, but do appear to give plausible results as far as it has 
been possible to check them. 

Direct experimental confirmation of the above results is not available. How- 
ever, estimates of the total drag using them have proved remarkably accurate. 

The computation of the results was performed under the direction of Mr 
G.L. Webb. The author also wishes to acknowledge the helpful criticisms of 
Prof. W. A. Mair, and of his colleagues. 
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